CV:31A 振动测试仪使用手册

此说明及其文字,软件,图形及相关版权所有为: © Copyright Cirrus Research plc 1989-2015

本使用说明的内容,图示,技术信息和描述在印刷时均为正确的。 Cirrus Research 有限公司有权在不提前通知的情况 下,根据产品的不断开发和改进修改此使用说明。

此说明中的任何内容未经 Cirrus Research 书面许可,不得复制,再版,存储于数据处理系统或进行电子,机械,摄影等 方式的传播,也不能对内容进行录制,翻译,编辑,缩写或者扩展。

此说明手册内容已经被反复核实并尽可能的准确完备,如出现错误或遗漏,不承担责任。

Cirrus Research 提供的配件是针对 Cirrus Research 生产的设备设计使用的。由于使用其它设备或者配件不当造成的毁坏,不承担责任。

为了产品的持续开发和改进, Cirrus Research 有权在不提前通知的情况下,修改此使用说明。

 \pm Cirrus Research plc 生产, Acoustic House, Bridlington Road, Hunmanby, North Yorkshire, YO14 0PH, United Kingdom.

© Copyright Cirrus Research plc 2015

文号 03/15/CV31A/01

文件印刷日期 Friday, 05 June 2015

简介	. 5
设备简介	. 5
开始使用 CV:31A	. 6
开机和连接传感器	6
CV:31A 的手臂振动测试	. 7
手臂振动测量点	7
CV:31A 手臂振动测试设置	8
CV:31A 全身振动测量	10
全身振动测量位置	10
CV:31A 测振仪测试设直	.11
全身振动测量 VDV 值	.12
座椅实际振幅传导(SEAT)	.13
通用振动测量	14
频率分析	17
设备设定	17
传感器校准	17
时间 & 日期	17
关机足可 由池型号	10 18
电池更换	.18
显示亮度	19
语言 缺省设置	20
数据存储	20
键盘锁	20
设备重置	20
数据传输到 PC	21
连接到 PC 打开 Excel 文件 CV/31 view	21
为 / Excel	21
振动暴露 A(8) 和 VDV(8)的计算	22
FFT 输入	25
附录 1 人体振动测试基础	26
介绍	26
EU 职业健康指令 2002/44/EC 暴露限值	.20 .27
附录 2 计权滤波	30
手臂计权滤波 Wh	.30
全身计权滤波 Wd	30
全身计权滤波 Wk	31
全身计权滤波 ₩D 针对各年	31
全身计权滤波 Wj 针对躺着的人的头部	.32
全身计权滤波 Wm 针对建筑内人	33
附录 3 规范	34
附录 4 CE 合格证书	35
Warranty Information.	36
, Cirrus Research 公司	37

简介

CV:31A 测振仪是最新一代手持式振动测量仪, 它特别适用于人体振动分析和测试场合。

另外,它的多功能设计也使得其在设备状态监测,建筑振动测量和质量控制等场合得以广泛应用。

通过结合精密三轴加速度计可完全按照 ISO 5349, ISO 2631 以及 EU Directive 2002/44/EC 等标准进行手臂或全身振动测量工作。

CV:31A 测振仪独特的四通道设计可使得其应用更加广泛,例如: 座椅测试等场合。

另外, CV:31A 测振仪符合 ISO8041 人体振动测试要求。

设备简介

开始使用 CV:31A

开机和连接传感器

通过按 ON/OFF 键打开 CV:31A。

如未连接传感器, 接入传感器连接线到连接口。

CV:31A 开始 TEDS¹ 检测如果传感器适用于 IEEE 1451.4 Template 25.

自动读数 X/Y/Z 三方向灵敏度。按 OK 键确认灵敏度。

CV:31A 传感器数据单 TEDS 包含传感器 KD:103 和 KD:903 加速计, 仪器可读传感器校准信息。

如果传感器无 TEDS 传感器数据单, CV:31A 打开菜单允许手动键入灵敏度。

只要传感器接入,键入灵敏度长期保存,即使无电池。

在新传感器连接前,传感器检测只有在屏幕上显示"SENSOR!"时进行。

警告 "SENSOR!"提示有缺陷传感器或者损坏的传感器连接线。

传感器状态检测通过传感器输出偏压:

< 0.7 V:	短路
0,7 - 14 V:	正常
>14 V:	开路, e.g. 连接线损坏

请注意连接传感器需要1分钟稳定时间。

CV:31A 适用接入低耗 IEPE 加速计,可在 1 mA 电流下运行。内部电压 18 VDC。

CV:31A 的手臂振动测试

本节阐述根据 ISO 5349 及 VDI 2057, Part 2 指导进行的设备手臂振动测试和评估的方法和要求。 更详细信息参看标准细节。

手臂振动测量点

传感器原则上应安装到尽可能靠近手臂的位置。当然,它绝对不能干扰工作流程。

测量时应采用与正常工作状态相同的握力。

由于绝大多数设备手柄不能提供安装平面, Cirrus 公司可提供在曲面上的安装附件。

Figure 7: Handle adapter ML:311

Figure 8: Handle adapter ML:312

适配器 ML:311 通过塑料扎带连接。ML:312 可通过手压在手柄上。

传感器与设备的紧密连接是非常重要的。任何传感器的松动会导致测量失败。

Figure 9 显示连接传感器到手柄上后,手柄附件的轴方向坐标。针对圆柱形手柄,Y坐标轴就是手柄轴。Z轴大致为第三掌骨的延长。

CV:31A 手臂振动测试设置

为评估手臂振动,建议测量 X/Y/Z 的 RMS 值并计算 aw 矢量和。

RMS 值的矢量和显示在屏幕上 a_w(Vec).

也就是 ISO 5349-1:2001 上的 a_{hv}。

CV:31A 测振仪可同时测量上述四个数据。另外,可显示运行 **RMS** 最大值(最大瞬时值, **MTVV)**,其可说明冲击振动的出现。

手臂振动的频率计权为 Wh.

附录 2 说明 CV:31A 滤波和 ISO 5349 容忍区间。

按 F3 键可打开主菜单并选择 Human vibration Hand-Arm ISO 5349 Health

在退到测量界面后,可按F1键检查设置。

当传感器和工人的手握住手柄后,按 key ▶ (Reset)键开始测量。开始进行:

- X/Y/Z 轴的 RMS 轴清零, aw 矢量和以及 MTVV 清零
- 重启测量计时器

开始测试前按 Reset 键是一个强制进行的步骤来定义开始状态。

X/Y/Z 轴的 RMS 值和矢量和可按输入测量时间求平均。这就是为什么测量时长越长,波动越小的原因。一段时间后,短期振动脉冲基本对显示数值无作用。

建议手臂振动测量时间不要低于 30 秒。在屏幕右上角的测量计时器会一直为红色直至 30 秒测量时间 到达。

"OVERLOAD"代替测量数值显示如果当前幅度值太大。即便过载 overload 状态很短暂,区间 RMS 值也可能无法显示因为丢失了取样。

测量全程过载屏幕右上角日期后显示 "OVL!", 可按 ▶ (Reset)键删除。

测量完成后,可按▼键保存测量结果。在按此键前,测量可继续或立即 结束。否则测量值会缓慢下降。

您可输入两行 10 字符的备注信息。通过◀▲▼▶ 键可选择输入字符以 及改变输入位置。

按 **F1** 键可改变输入行。测量可在输入备注前结束由于按▼键测量结果 已经保存。

测量保存只有在 X/Y/Z 检测到传感器并且没有过载。CV:31A 会显示 "Sensor error"或者 "Overload occurred" 来代替保存数据以免发生 无效数据保存。

发一个红色报警信息"OVL!"它可通过▶键复位。

如果想测量几个暴露量,可继续测量。

PC 可计算振动量 A(8)并可保存到 Excel 宏文件。详情见 22 页传输测量到 PC。

CV:31A 第四通道(A)在进行手臂振动测量时不可用。

CV:31A 全身振动测量

此章节介绍根据 ISO 5349 和 VDI 2057 Part 1 的全身振动测量和评估的方法和要求。详细内容请 查看原文。

此测量方法适用于所有人体整体振动测量,但不适于冲击或撞击振动测量,如:车祸分析。手臂振动 分析见上章节叙述。

全身振动测量位置

全身振动测量通常采用衬垫式三轴加速度传感器。此压电传感器安装到一个橡胶盘上,可调节振动源与人体的接触面。(Figure 4)

标准测量位置如下:

- 坐着一个人的座椅面上
- □ 坐着一个人的座椅靠背面
- □ 坐着一个人的脚下面
- □ 站着一个人的脚下面
- □ 躺着一个人的骨盆下面
- □ 躺着一个人的头部下面

Figure 13显示 ISO 2631 标准定义的全身振动坐标系。如图所示, Z坐标轴总是脊柱方向。

正确安放振动传感器。特殊情况例如靠背测试 (见 Table 2 第 10 页).

Figure 13: Coordinate systems for whole-body vibration to ISO 2631

Table 2 显示不同姿势和位置的加权滤波和加权因数。

全身健康评估						
姿势	位置	方向	频率计权	计权因子 (k)		

坐	座椅表面	X / Y Z	W _d W _k	1.4 1	
全身舒适评估	Ī			·	
	座椅表面	X / Y Z	W _d W _k	1 1	
坐	脚踩台	X / Y Z	W _k	0.25 0.4	
	靠背	X* Y Z*	W _c W _d W _d	0.8 0.5 0.4	
站	脚踩台	X / Y Z	W _d W _k	1 1	
臣 \	骨盆下	X (vertical) Y / Z (horizontal)	W _k W _d	1 1	
	头下	X (vertical)	W _i	1	
火车上:					
站 坐 卧	脚踩台 座/靠背/脚 支撑.表面, 骨盆/头	X / Y / Z	W _b	1	
建筑内:					
无定义	建筑内	X / Y / Z	W _m	1	

Table 2: Weighting filters and factors for whole-body vibration

*请注意对于所有测量,Z轴均是指延人体脊椎的方法。对于在靠背的衬垫加速度计而言,允许Z轴 方向是与脊椎方向垂直的。当然,可通过补偿,CV:31A测振仪可以在靠背测量时自动转换X和Z 轴。

CV:31A 测振仪测试设置

全身振动测量 RMS 值

为评估全身振动,建议测量 X/Y/Z 的 RMS 值并计算 a_w 矢量和。 CV:31A 测振仪可同时测量上述四个数据。另外,可显示 RMS 最大值 (最大瞬时值, MTVV)。

接下来介绍全身振动健康风险评估,健康评估可通过在 X/Y 轴的加权 滤波 Wd 和 Z 轴的加权滤波 Wk 和 X/Y/z 轴加权因数: 1.4 以及 Z 轴 加权因数: 1.0 这些参数完成的。

附录 2 显示滤波 Wd and Wk 频率响应曲线以及 ISO 8041 所要求的 容忍范围。

13:19 10 S	p 2014
ISO 2631 Who Health	le-Body
Interval RMS	values
Y: 0.31 m/	(S ²
2: 0.07 M	· •
a _w (Vec)	0.76 ^{m/s²}
MTUU	0.60 M/S ²
4: RMS∕UDU F1:Info ▼:Sav	: Reset ve F3:Menu

另外, CV:31A 的健康评估功能也支持舒适度检测。此类型测量是使用其它的姿势和传感器位置以及不同的加权频率, 但基本操作相同。

附录 2显示计权滤波频率响应曲线针对舒适度测量。

按F3 键可打开主菜单,选择"Measuring mode" / "Human vibration" / "Whole-body ISO 2631" / "Health"。

在退到测量界面后,可按 F1 键检查设置。

如需要,可按◀键从 RMS 转到 VDV。

如果测试者在正确位置上并且振动暴露开始了,按▶ (Reset)开始测量:

- X/Y/Z 轴的 RMS 轴清零, aw 矢量和以及 MTVV 清零
- 重启测量计时器

开始测试前按 Reset 键是一个强制进行的步骤来定义初始状态。

X/Y/Z 轴的 RMS 值和矢量和可按输入测量时间求平均。这就是为什么测量时长越长,波动越小的原因。一段时间后,短期振动脉冲基本对显示数值无作用。

建议手臂振动测量时间不要低于 2 分钟。在屏幕右上角的测量计时器会一直为红色直至 2 分钟测量时间到达。

"OVERLOAD" 代替测量数值显示如果当前幅度值太大。即便过载 overload 状态很短暂,区间 RMS 值也可能无法显示因为丢失了取样。

测量全程过载屏幕右上角日期后显示 "OVL!",可按 ▶ (Reset)键删除。

测量完成后,可按▼键保存测量结果。在按此键前,测量可继续或立即结束。否则测量值会缓慢下降。 您可输入两行 10 字符的备注信息。

通过◀▲▼▶ 键可选择输入字符以及改变输入位置。按 F1 键可改变输入行。

测量可在输入备注前结束由于按▼键测量结果已经保存。

测量保存只有在 X/Y/Z 检测到传感器并且没有过载。CV:31A 会显示"Sensor error"或者 "Overload occurred" 来代替保存数据以免发生无效数据保存。

如果过载放生 "OVL!" 显示在右上角,设备会显示提示 "Overload occurred after last reset! Save anyway?"。

如果想测量几个暴露量,可继续测量。

PC 可计算振动量 A(8)并可保存到 Excel 宏文件。

全身振动测量 VDV 值

CV:31A 测振仪可进行基于振动量值(VDV)的全身振动测量。这里是 4 次开方平均值。VDV 的测量 单位 m/s^{1,75}.

$$VDV = \sqrt[4]{\int_0^T a_w^4(t)dt}$$

Equation 11

按◀ 键可从 RMS 转到 VDV 以及反向转换。 采用与 RMS 测量相同的加权滤波和因数值。可按 F1 键检查设置。

X/Y/Z 轴方向仪器显示 VDV 值。另外,可显示三轴最高值(Max. VDV)和从最近复位(Max. abs.) 后的 VDV 最高值。

VDV 需要按▶ 键(Reset)重新开始。

按▼键保存测量结果。(见 17 页).

Excel 文件可以根据 VDV 测量值用来计算测量暴露量。

座椅实际振幅传导(SEAT)

座椅实际振幅传导值(SEAT) 是同一个振源分别传导到座椅顶部和地面的振动比值。

所有振动振幅测量仅在 Z 轴方向。SEAT 值被广泛应用于座椅振动隔离 效果测试中。

CV:31A 测振仪第四通道(A)结合了无轴加速度计用来确定 SEAT 值。

通过传感器连接线连接到左边位置。第四通道命名"A" 会显示。 TEDS 传感器的灵敏度会自动检测到。非 TEDS 传感器需要手动键入灵 敏度。

选择"Whole-body ISO 2631"/"Unweighted"对于 X/Y/Z 通道。Channel A 无加权滤波。 它的频率范围(-3 dB) 是 0.8 - 250 Hz。在 X/Y/Z 下面会显示 A 通道的 RMS 或 VDV 值。

通用振动测量

另外, CV:31A 测振仪可完成以下人体振动测量:

- 振动加速度 0.1 to 2000 Hz 和 1 to 1000 Hz,
- 振动速度 1 to 100 Hz, 2 to1000 Hz 和 10 to 1000 Hz,
- 振动位移 5 to 200 Hz.

按 F3 键打开菜单,选择"Measuring mode"并使用▲▼键选择振动量程。

在测量界面,可通过 ◀键转换 RMS 和峰值。请注意:在通用振动量程中的 RMS 和峰值是根据最后刷 新得到的,不是长时间值。

刷新率可根据频率而定,一般在1-4秒。

RMS 或峰值会显示 X/Y/Z 三轴。如您连接传感器到 A 通道输入端,也会显示 A 通道的 RMS 值或峰 值。

A通道测量永远为加速度。频率范围根据 X/Y/Z 轴选择模式而定(Table 3)。

模式 X/Y/Z	频率范围 X/Y/Z	频率范围 A
加速	0.1 to 2000 Hz	0.1 to 2000 Hz
加速	1 to 1000 Hz	3 to 1000 Hz
速度	1 to 100 Hz	1 to 250 Hz
速度	2 to 1000 Hz	2.5 to 750 Hz
速度	10 to 1000 Hz	2.5 to 750 Hz
位移	5 to 200 Hz	1 to 250 Hz

Table 3: Frequency ranges of channel A

振动速度是通过加速度一次积分得到的, 位移是通过二次积分得到的。

在测量频率高频极限位置处理积分会有一个信号强衰减情况,特别是对于位移计算。

低频信号包括噪声会放大,因此需要使用高通滤波。通用振动范围频率响应曲线图如下所示。

Figure 25: Frequency ranges of vibration velocity

Figure 26: Frequency range of vibration displacement (upper end due to resolution)

按F1 可检查振动质量和频率范围。

下面的 3 (or 4) RMS 或峰值可在 X/Y/Z 方向计算查看这两个结果:

- 通过之前的按▶ (Reset)键在 RMS 模式下的 X/Y/Z (a_w(Vec)) 矢量和以及最高 RMS 值 (Max. abs.)
- 通过之前的按▶ (Reset)键在峰值模式下的当前显示的 XYZ 峰值(Max. XYZ)最高的一个值以 及最高峰值(Max. abs.)

最大值在其发生的通道会以颜色标注出来。

按复位 Reset 键 ▶

- 删除最大值
- 重启测量计时器

按▼键保存测量结果。

频率分析

CV:31A 测振仪可提供频率分析功能(FFT),已通过 125 线加速 度频谱检测主频。.

在打开 FFT 界面后按 F3 并选择 "Frequency analysis" 子菜单。 您可看到 X/Y/Z 通道的频率值。

图形上的线指示最大频谱线的频率和振幅。

按 **<** ▶ 键可移动光标。图标下可看到光标读数。 按 **F1** 或 **F2** 可改变频率量程。有四档量程可选:

- 3 to 244 Hz
- 7 to 488 Hz
- 15 to 977 Hz
- 30 to 1954 Hz

按▼键可保存频谱。CV:31A 测振仪内存可保存 1000 组 FFT。

按 F3 可打开菜单并选择 "Data memory" /"View/delete FFT data"子菜单,查看保存的 FFT。通过 ▲▼ 键可选择目标 FFT。并通过 ◀▶键可在内存中激活光标功能。

储存的 FFT 数据可保存到计算机上, A 通道无 FFT 功能。

设备设定

传感器校准

如果连接的传感器不具备 TEDS 功能, CV:31A 测振仪会自动打开 "Transducer calibration"。

它也可以通过"Device settings"菜单打开。可在此检查和改变 传感器灵敏度。

灵敏度的输入是在 X/Y/Z 轴以一个接一个输入。如果连接 A 通道 传感器,也需输入。灵敏度值是个五位数,单位是 mV/ms⁻²。您 可在传感器自带的校准表上找到正确的灵敏度值。按 F1 键可进行 小数点位置变换。一般允许的灵敏度范围在 0.800 到 12.000 mV/ms⁻² 或 8.00 到 120.00 mV/ms⁻².

时间&日期

存储测量数据时同时存储时间和日期。按 F3 键并选择 "Device settings" 的子菜单 "Date and time" 可选择设置测振仪的日 期和时间。

通过▲▼键可调整选择值。按**∢**▶键可在小时,分钟,月,日, 年间转换。注意输入争取日期。

另外,如果时钟不准可修正。可在"Cal."下设置 ppm (parts per million)。时钟频率可加减。

关机定时

CV:31A 测振仪提供自动关机功能,以保护电池寿命。按 F3 键打开 主菜单,选择 "Device settings"和 "Shut-off timer"。

通过▼▲键可设置 1, 5, 15 或 60 分钟自动关机时间或者永不关机 ('none')。一旦有任何键被触发,自动关机计时器会重新计时。

电池型号

充电电池和非充电电池电压有所区别。按 F3 键打开主菜单,选择 "Device settings"和 "Battery type"。

子菜单 "Battery type" 下按 ▼ 选择 "Alkaline" (不可充电, 1.5 V) 或 "NiMH" (可充电, 1.2 V).

不可充电电池电压低于 **3.3** V 或充电电池电压低于 **3** V 即电量不足时, 电池指示显示红色。

此情况可继续进行测量,电压低于 2.8 V 时,设备自动关机。

电池更换

CV:31A 测振仪使用三节 AAA 碱性电池供电, NiMH (HR03)充电电池也可使用。

即使电量即将用尽,仍然保证测量精确度。更换电池后,时间日期需要重新设置。其它设置和数据不会因为更换电池而消失。

接入电池,需移除背面两个螺丝,打开电池外罩。

放入电池时,注意安放正负极准确。

重要:

- 同时使用3节相同型号和类型及厂商的电池。
- 如长时间不用设备,请移除电池,避免电池泄露造成设备损坏。

屏幕左上角显示电池电量。

绿色显示电量充足,变红说明电量减少,设备即将自动关机。

CV:31A 可通过 USB 使用,节省电池,这种情况下显示 "Extern" 而不是电池标记。

显示亮度

在 "Device settings" / "Display brightness" 菜单可通过◀▶键调 整显示亮度。

降低亮度可有效保护电池使用寿命。最多可节省大约 20 % 电量。.

语言

在"Device settings" / "Menu language" 菜单可选择显示界面语言。有效的语言环境是根据 安装的固件决定的。

缺省设置

在"Device settings" / "Load defaults"菜单可复位至 CV:31A 测振仪的出厂设置。它同时会删除内存记忆但不会改变传感器灵敏度。

数据存储

CV:31A 测振仪可保存 10,000 个数据记录。其中包括:

- 时间日期
- 备注(20 字符)
- 滤波器和测量模式
- X/Y/Z 轴测量值,如需要, A 通道值, 2 个综合值(矢量和或最 大值)

保存的数据可以在屏幕上察看。按 F3 键进入菜单并选择"Data memory" / "View/delete measurement"子菜单查看保存的数据。通过▲▼ 键可选择查看记录。

通过 ◀键可删除单一记录。一旦删除,此记录将无法再次显示。它的存 储位置并不会解除直至内存输入被清除。

此可通过"Data memory"/"Delete memory"子菜单完成。请注意 FFT 记录也被删除了。

键盘锁

CV:31A 测振仪提供键盘锁功能,可在主菜单下选择"Key lock"。

解除键盘锁可同时按◀▲▼▶四个按键完成,屏幕会显示 "unlocked"。

设备重置

CV:31A 使用 reset 键进行设备重置.

重置键在型号标记附近的孔内,可用细小东西接触。

设备重置,存储的数据和设置不会丢失。

Rec. No. 4 10.09.14 13 Hand-Arm X: Wh Y: Wh Interval R ^h TOOL 12	/ 4 3:23:46 Z: Wh IS values MILLER
X:	0.04 m/s²
Y:	0.12 m/s²
Z:	0.36 m/s²
a _u (Vec)	0.39 m/s²
MTVV	0.39 m/s²
AT: Select	4: Del. F3: Quit

数据传输到 PC

连接到 PC

CV:31A 具有 USB 端口。通过 ZL:311 USB 专用数据线将仪表和电脑连接, CV:31A 测振仪是 8 针接口。连接电脑时, 仪器应处于关机状态。

连接电脑后,开机 CV:31A,初次连接,会安装驱动。

驱动 MMF_VCP.zip 在随机的 CD/DVD 上。

在电脑中解压并保存驱动文件。

可能需指示安装路径。适用 Windows XP, Vista, 7 和 8.

打开 Excel 文件 CV31.xlsm

Excel 宏文件 CV31.xlsm 可提供从 CV:31A 传输,显示和激活数据功能。随机 DVD/CD 上提供, 也可在此下载: <u>www.cirrusresearch.co.uk/library/software</u>

文件可适用 Excel2007 以上所有版本。

它可将 CV:31A 内存数据传输到 Excel 表格中。振动量 A(8) 或 VDV(8)可从人体振动记录中计算并可生成测量报告。FFT 数据可被传输并以图形形式显示。

首先需要系统允许宏命令执行。

点击"Excel options", "Trust center", "Trust center settings"和"Macro settings"。 选择"Disable all macros with notification"或"Enable all macros"。选择第一个, 打开文件时会被反复问许可。选择第二个, 不会再次询问许可, 但是会有一定损坏宏文件危险。

Page	22
i uge	~ ~

Trusted Publishers	Marro Settings
Trusted Locations	mato settings
	Disable all macros without notification
Trusted Documents	Disable all macros with notification
Add-ins	Disable all macros except digitally signed macros
ActiveX Settings	Enable all macros (not recommended; potentially dangerous code can r
Macro Settings	Developer Macro Settings
Protected View	Trust access to the <u>V</u> BA project object model
Message Bar	
External Content	
File Block Settings	
Privacy Options	

数据导入到 Excel

打开工作表"Import"。如果此处已经有测量数据,并保存至其它文件名并点击"Clear tables", 清除所有测量数据。

连接 CV:31A 测振仪到电脑并开机。安装驱动如果之前没有安装。点击"Import measurements from CV:31A"。仪器虚拟 COM 端口会自动检测。

如其它仪器使用虚拟 COM 端口,则可能导致读取失败,数据传输前需要移除该设备。

在 "Status"区域会显示相关信息已确认输入流程。数据传输需要几秒或几分钟根据数据大小定。

在数据传输时, Excel 会自动将各个信息分配到相应列中,如:记录数,日期,时间,备注,模式, 滤波, X/Y/Z 轴测量值, A 通到测量值等。B 和 C 列显示合成值。

A	В	C	D	E	F	G	Н	L	J	K	L	M	N	0	
1	VM31	Data Im	port	Ver. 1	Status:	Import finis	ned.				100				- C
2 3	Import	measurem	ents from	VM31 Clear tables	Select all	Uns	select all Transfer selected	l data todaily ex	posure we	orksheets	Help	p	MI	TP	
4 5	То	FFT Import	t workshe	et									www.r	nmf.de	
6	Use ch	eck boxes	to select	data for A(8) calculation.											
7									Measu	rements			Combi	ned meas	surement
8 Sel.	No.	Date	Time	Comment	Mode	Detection	Filter (weighting factors)	Weighting							Unit
9 [00001:	07.09.14	10:09:36	STAPLER HALLE SCHMIE	DT W/B	IRMS	Wd (1.40) Wd (1.40) Wk (1.00)	health	0,01		1,25				m/s ²
10	00002:	07.09.14	12:19:51	STAPLER HOF SCHMIDT	W/B	IRMS	Wd (1.40) Wd (1.40) Wk (1.00)	health	0,24		3,18				m/s ²
11	00003:	07.09.14	12:30:01	STAPLER HALLE MEIER	W/B	IRMS	Wd (1.00) Wd (1.00) Wk (1.00)	health	0,50		1,70				m/s ²
12	00004:	07.09.14	13:10:11	STAPLER HOF MEIER	W/B	IRMS	Wd (1.00) Wd (1.00) Wk (1.00)	health	0.54		2.81				m/s ²
13									1.0000						
14															
15															1
Figu	re 38	R. Exc	el im	nort											

振动暴露 A(8) 和 VDV(8)的计算

振动暴露 A(8)或 VDV(8)针对人体振动风险评估设定。

振动暴露 A(8)或 VDV(8)的计算是基于手臂(H/A)和全身(W/B)振动测量结果得到的。可在左侧序列 倒入的数据中选择数据进行暴露计算。或者可选择全部 "Select all"进行计算。选择完数据后,点击 "Transfer selected data to daily exposure worksheets"。

这将把记录传输到工作数据中,此时,工作表会有手臂测量和全身测量的 RMS 值。VDV 是根据全身测量计算得到的。

会有一个信息栏显示已有多少个记录已被传输。

根据计算类型,会打开工作记录表:

A(8) RMS H-A	A(8) 手臂振动
A(8) RMS W-B	A(8) 全身振动
Daily VDV W-B	每日全身振动暴露量

振动暴露量计算可适用多人情况或多运动状态。

每个记录会有两个下拉菜单。您可根据需要在"Person"和 "Activity" 里写下自己的信息。

下次数据传输时,您可在下拉菜单中看到更改情形。

O 2631-1: 1997
×
ults:
Near exposure limit!
Above exposure limit!!

Figure 39: Daily exposure calculation in Excel

点击 "A(8) calculation" 或在 VDV 计算下点击 "Daily exposure calculation" 可计算振动量。 (Figure 39)

其计算结果会比较 EU directive 2002/44/EC 的极限值并提供不同颜色标注:

黑色:低于暴露行动值

紫色:介于暴露行动值和极限值之间

红色: 高于暴露极限值

在振动量暴露计算过程中会自动生成一个报告。您可在"... Report"中找到。

表格中有每个人每个活动的暴露量。下面可以看到每个人的振动暴露量。(Figure 40).

Limit values to EU Directive 2002/44EC:

Exposure action value: 0,5 m/s²

Exposure limit value: 1,15 m/s²

Measuring results

Person	Activity	Comment	Date	Time	Duration		Accelerations Vect. sum		Max. RMS Partial exposures					
		(from VM31)			1	ī	awx	awy	awz	Aw(vec)	MTVV	A(8)x	A(8)y	A(8)z
			dd.mm.yy	hh.mm.ss	hrs	min	n m/s²	m/s ²	m/s ²	m/s ²	0,0	0,00	m/s ²	m/s ²
Person 1	Activity	1 STAPLER HALLE	SC 07.09.14	09:09:36	2	0	0,01	0,28	1,25	1,32	1,26	0,01	0,14	0,63
Person 1	Activity	2 STAPLER HOF SC	HN 07.09.14	10:09:51	0	30	0,24	0,39	3,16	3,21	3,18	0,06	0,10	0,79
Person 2	Activity	1 STAPLER HALLE	ME 07.09.14	10:15:01	2	30	0,50	0,93	1,70	2,11	1,92	0,28	0,52	0,95
Person 2	Activity	2 STAPLER HOF ME	EIE 07.09.14	10:30:11	1	45	0,54	1,06	2,81	3,54	2,86	0,25	0,50	1,31

Daily Vibration Exposure A(8)

Person 1	1,01	m/s²	Near exposure limit!
Person 2	1,62	m/s²	Above exposure limit!!

Figure 40: Example report (part)

FFT 输入

CV:31A 保存的 FFT 数据可传输到 Excel 宏文件中。转到工作表"FFT Import"。

如有表内已有 FFT 数据,请另存到其它文件名,并点击"Clear FFTs"清空该工作表。然后点击"Import FFTs from CV:31A"。

频率步值跟随相关 X/Y/Z 轴的振幅分配到工作表行中。您能查看每个记录的日期,时间,备注信息。

选中左手的哪个 FFT 来显示到三副图中。(Figure 41).

Figure 41: FFT Import to Excel

附录1人体振动测试基础

介绍

人体振动测量主要目的是测试潜在健康风险和评估舒适度,如在船舶,车辆,建筑,运动等的体感。

一般有两种测量类型:

- **手臂振动**, 振动是通过手臂传输到人体的方式, 它们可导致循环紊乱, 骨折, 肌肉和关节损伤 等。
- 全身振动,一般是通过臀部,背部或腿部脚部等传递振动方式。无论是站坐卧姿势的振动,可
 导致对人体背部和脊柱的伤害。

所有上述振动测试必须要满足下列国际标准:

- **ISO 5349** Measurement and evaluation of human exposure to hand-transmitted vibration
- **ISO 2631** Evaluation of human exposure to whole-body vibration
- (also ASA/ANSI S3.18)
- ISO 8041 Human response to vibration. Measuring Instrumentation
- **ISO 8662** Hand-held portable power tools Measurement of vibrations at the handle
- **ISO 6954** Guidelines for the measurement, reporting and evaluation of vibration with regard to habitability on passenger and merchant ships
- **ISO 10056** Measurement and analysis of whole-body vibration to which passengers and crew are exposed in railway vehicles
- ISO 10326 Laboratory method for evaluating vehicle seat vibration
- **ISO 28927** Hand-held portable power tools Test methods for evaluation of vibration emission

以及欧洲职业健康指令 2002/44/EC。

EU 职业健康指令 2002/44/EC

以下是 2002/44/EC 关于人体振动限值的定义,可在以下网址查看相关内容: http://eur-lex.europa.eu/

暴露限值

指令具有以下限值:

	<i>手臂, RMS</i>	<i>全身, RMS</i>	<i>全身, VDV</i>
暴露行动值	2.5 m/s ²	0.5 m/s²	9.1 m/s ^{1,75}
暴露限值	5 m/s²	1.15 m/s ²	21 m/s ^{1,75}

Table 1: Limits to EU directive 2002/44/EC

一旦暴露行动值超出,需要采取相应措施,详情参见英文说明。

每日暴露 A(8) 计算方法:

$$A(8) = a_{we} \sqrt{\frac{T_e}{T_0}}$$

<u>方程 1</u>

其中:

- A(8) 是每日振动暴露
- awe 是暴露期间能量等效平均值针对频率计权加速度, 针对手臂振动, X/Y/Z 矢量和 Wh 频率计权 RMS 值 (2)

$$a_w = \sqrt{a_{wx}^2 + a_{wy}^2 + a_{wz}^2}$$

<u>方程 2</u>

针对全身振动最高的 3 RMS 值 a_{wx}, a_{wy} 和 a_{wz} 具有如下频率和幅度计权:: - X 和 Y 具有计权滤波 W_d 和计权因子 1.4 - Z 具有计权滤波 W_k和计权因子 1.0

- T_e 是一个工作日总体暴露时间
- T₀ 是 8 小时时间参考

手臂振动

$$A(8) = \sqrt{\frac{1}{T} \sum_{i=1}^{n} a_{wi}^{2} T_{ei}}$$

<u>方程 3</u>

其中:

A(8) 是每日暴露

awi是暴露期间 i 能量等效平均值针对频率计权加速度 Wh

n是暴露次数

T_{ei}是暴露 i 的时间

T₀ 是 8 小时时间参考

全身振动

$$A_{x}(8) = \sqrt{\frac{1}{T} \sum_{i=1}^{n} a_{wxi}^{2} T_{ei}}$$

<u>方程 4</u>

$$A_{y}(8) = \sqrt{\frac{1}{T} \sum_{i=1}^{n} a_{wyi}^{2} T_{ei}}$$

<u>方程 5</u>

$$A_{z}(8) = \sqrt{\frac{1}{T} \sum_{i=1}^{n} a_{wzi}^{2} T_{ei}}$$

<u>方程 6</u>

其中

Ax/y/z(8)是每日暴露针对方向 X/Y/Z

- **a**wx/y/zi 是暴露期间能量等效平均值针对频率计权加速度在方向 X/Y/Z,针对 i 暴露过程,具有如下频率和幅度计权:
 - X 和 Y 具有计权滤波 Wd 和计权因子 1.4
 - Z 具有计权滤波 Wk 和计权因子 1.0

n 是暴露次数

Tei 是暴露 i 的时间

T₀ 是 8 小时时间的参考

以上计算基于 RMS 值. 基于 VDV 的每日暴露 VDV(8) 计算:

$$VDV (8) = VDV \cdot \sqrt[4]{\frac{T_{exp}}{T_{meas}}}$$

<u>方程 7</u>

其中

VDV(8) 是每日暴露值

VDV 是频率计权振动暴露量值

T_{exp}是暴露时间

Tmeas 是 VDV 测量时间

进行对比.

$$VDV_{x}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{xi}^{4} \cdot \frac{T_{iexp}}{T_{imeas}}}$$

<u>方程 8</u>

$$VDV_{y}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{yi}^{4}} \cdot \frac{T_{iexp}}{T_{imeas}}$$

<u>方程 9</u>

$$VDV_{z}(8) = \sqrt[4]{\sum_{i=1}^{n} VDV_{zi}^{4} \cdot \frac{T_{iexp}}{T_{imeas}}}$$

<u>方程 10</u>

其中

VDV_{X/Y/Z}(8) 是每日暴露针对方向 X/Y/Z

VDV_{x/y/zi} 是频率计权振动量针对方向 X/Y/Z 在暴露部分 i

T_{iexp} 是暴露部分 i 的时间

Tmeas 是暴露部分 i VDV 测量的时间

附录2计权滤波

手臂计权滤波 Wh

全身计权滤波 Wd

全身计权滤波 Wk

全身计权滤波 Wb 针对客车

全身计权滤波 Wc 针对靠背座椅

全身计权滤波 Wj 针对躺着的人的头部

附录 3 规范

输入	4 低耗 IEPE 输入, > 0.7 mA / 17 V, 传感器灵敏度范围 0.8 to 120 mV/ms ⁻² TEDS 支持 (IEEE1451.4, Template	25)			
显示功能					
人体振动	RMS 区间值 矢量总值 最大运动 RMS (MTVV)				
一般振动 (加速,速度和位移)	振动 dose 值 (VDV) 运动 RMS 最大运动 RMS 矢量总值 峰值 最大峰值				
测量范围 加速 速	传感 1 mV/ms ⁻² 1100 m/s ² 100 - 10 000 mm/s (1 kHz (1 Hz)	传感 10 mV/ms ⁻² 110 m/s ² 10,1000 mm/s (1 kHz (1 Hz)			
	250 - 15000 mm/s (1 kHz / 1 Hz) 250 - 15000 µm (5 Hz / 250 Hz)	10 - 1000 mm/s (1 kHz / 1 Hz) 25 - 1500 µm (5 Hz / 250 Hz)			
(zero-to-peak 值)	, , , , , , ,	,,,,,,,			
显示分辨率	传感 1 / 10 mV/ms⁻²	传感 100 mV/ms ⁻²			
加速	0.01 m/s ²	0.001 m/s ²			
速度	0.1 mm/s 1 um	0.001 mm/s 0.1 um			
位 修 一 ど 修 - - - - - - - - - - - - -	- pm - 75 dp (z + 6 9/ 提 差)	0.1 µm			
线性犯固	> /5 dB (<±6 % 庆左)				
喋 首	< 0,003 m/s ²				
滤波器 人体振动 加速 速度 位移	计权 Wb, Wc, Wd, Wh, Wj, Wk, Wm 无计权: 6.3 - 1259 Hz (hand-arm); 0.4 - 0.1 Hz – 2 kHz; 1 Hz – 1 kHz 1 Hz – 100 Hz; 2 Hz – 1 kHz; 10 Hz – 1 kH 5 Hz: – 250 Hz	100 Hz (全身) Hz			
频率分析	125 线 X/Y/Z 轴频率分析, 加速度峰值 频率范围: 3 - 240, 6 - 480, 12 - 960, 24 刷新率: 0,5/s; 窗: Hann	频谱 - 1920 Hz			
数据存储	Flash; 10,000 组记忆空间和 1000 组 FFT 测量数据				
显示	OLED, 彩屏, 128×160 像素				
USB 接口	USB 2.0,全速, CDC 模式, 通过连接线 VM2x-USB				
电池	3 个 AAA 或 Alkaline (LR03) 或可充电 N	NiMH (HR03)			
电池运行时间	10-14 小时				
运行温度	- 20°C – 60 °C				
尺寸	125 mm x 65 mm x 27 mm (无连接器)				
重量	140g(包括电池,不包括传感器)				

附录 4 CE 合格证书

Cirrus Research plc Hunmanby UK CE Certificate of Conformity

CE

Manufacturer: Cirrus Research plc Acoustic House, Bridlington Road Hunmanby, North Yorkshire, YO14 0PH United Kingdom Telephone +44 1723 891655

Equipment Description

The following equipment manufactured after 1stMarch 2015:

CV:31A Vibration Meter

meet the following standards

EN 61010-1: 2002 (Safety requirements) EN 61326-1: 2006 (EMC requirements)

Signed

Dated 1stMarch 2015

S. O'Rourke Director

Warranty Information.

- 1. 此部分为 Cirrus Research 相关保修文件的概括,用通用语言阐释,非法律文件。
- 2. 保修涵盖 Cirrus Research 自 2011 年 9 月 1 日以后生产的所有声学设备,如声级计,声校准器,实时声分析仪 或者个人声暴露测量计(dosemeter)。
- 3. 保修涵盖设备的所有故障,包括小事故损坏,单是不包含传声器损坏。
- 4. 如使用非 Cirrus Research 的配件,传输线等引起的设备的损坏不在保修范围内。
- 5. 保修期为从 Cirrus Research 或其认证分销商处购得新品起两年或者 104 周,或在 Cirrus Research 通过产品制 造最终检测起 130 周,时间短者适用。
- 6. 对于样机以及曾租用机,保修期为1年或者52周,除非有Cirrus Research书面其它协议。
- 7. 电池厂商提供可充电电池保修期为1年。
- 8. 如果 Cirrus Research 对设备进行"例行检测",设备自动具有1年额外的免费保修期。
- 9. 如果 Cirrus Research 每年对设备进行"例行检测",设备可具有自购买期起最长 15 年保修期。
- 10. 对设备进行"例行检测",客户负责运费,税务等支出。
- 11. 保修期内, Cirrus Research 负责运费等花费如果设备出现故障,同时如果设备有明显人为损坏或无任何故障, Cirrus Research 保持权利谢绝保修。
- **12.** 在 **15** 年内, **Cirrus Research** 将尽力库存设备零配件, 但是不能确保, 因为某些零件可能已经淘汰或者停止生产了。
- 13. 如果某一个零件已经报废,也没有库存了, Cirrus Research 会尽力提供维修,但是不能确保同样长度的保修期。
- 14. 如果发生任何有关保修的争端, Cirrus Research 接受英国声学协会的仲裁。
- 15. 保修不影响购买者或者用户使用声级计的合法权利。它是欧盟所要求的额外权利。
- 16. Cirrus Research 保留修改升级此保修协议的权利。

保修条例 2.5 May 2012

Cirrus Research 公司

下列地址为 Cirrus Research 办公地点。Cirrus Research 在世界各地具有授权的分销商和代理商。了解地方 代表的详细联系方式,请联系 Cirrus Research。已授权的分销商和代理商的详细信息也可以在如下说示的公 司网站上查到。

总部

Cirrus Research plc Acoustic House Bridlington Road Hunmanby North Yorkshire United Kingdom YO14 0PH

 Telephone:
 +44 (0)1723 891655

 Fax:
 +44 (0)1723 891742

 E-mail:
 sales@cirrusresearch.co.uk

 Web Site:
 www.cirrusresearch.co.uk

德国

Cirrus Research plc Deutschland Arabella Center Lyoner Strasse 44 – 48 D-60528 Frankfurt Germany

Tel: +49 (0)69 95932047 Fax +49 (0)69 95932049

Email:vertrieb@cirrusresearch.deWeb:www.cirrusresearch.de

西班牙

CIRRUS RESEARCH S.L. Travessera de Gracia, 62 4º 7ª 08006 Barcelona SPAIN

Tel:	(34) 933 622 891
Email:	info@cirrusresearch.es
Web:	www.cirrusresearch.es